Inside-out Z rings--constriction with and without GTP hydrolysis.
نویسندگان
چکیده
The bacterial tubulin homologue FtsZ forms a ring-like structure called the Z ring that drives cytokinesis. We showed previously that FtsZ-YFP-mts, which has a short amphipathic helix (mts) on its C terminus that inserts into the membrane, can assemble contractile Z rings in tubular liposomes without any other protein. Here we study mts-FtsZ-YFP, where the membrane tether is switched to the opposite side of the protofilament. This assembled 'inside-out' Z rings that wrapped around the outside surface of tubular liposomes. The inside-out Z rings were highly dynamic, and generated a constriction force that squeezed the tubular liposomes from outside. This is consistent with models where the constriction force is generated by curved protofilaments bending the membrane. We used this system to test how GTP hydrolysis by FtsZ is involved in Z-ring constriction. Without GTP hydrolysis, Z rings could still assemble and generate an initial constriction. However, the constriction quickly stopped, suggesting that Z rings became rigidly stabilized in the absence of GTP hydrolysis. We propose that remodelling of the Z ring, mediated by GTP hydrolysis and exchange of subunits, is necessary for the continuous constriction.
منابع مشابه
Force generation by a dynamic Z-ring in Escherichia coli cell division.
FtsZ, a bacterial homologue of tubulin, plays a central role in bacterial cell division. It is the first of many proteins recruited to the division site to form the Z-ring, a dynamic structure that recycles on the time scale of seconds and is required for division to proceed. FtsZ has been recently shown to form rings inside tubular liposomes and to constrict the liposome membrane without the p...
متن کاملDynamic clustering of dynamin-amphiphysin rings regulates membrane constriction and fission coupled with GTP hydrolysis
1 Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin 2 mediated endocytosis. Dynamin forms washer ring-shaped/helical complexes at the neck of 3 clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane 4 fission. Dynamin and its binding protein amphiphysin cooperatively regulates membrane 5 remodeling during fission, but its pr...
متن کاملEstimating the bending modulus of a FtsZ bacterial-division protein filament.
FtsZ, a cytoskeletal protein homologous to tubulin, is the principle constituent of the division ring in bacterial cells. It is known to have force-generating capacity in vitro and has been conjectured to be the source of the constriction force in vivo. Several models have been proposed to explain the generation of force by the Z ring. Here we re-examine data from in vitro experiments in which ...
متن کاملFtsZ Constriction Force - Curved Protofilaments Bending Membranes.
FtsZ assembles in vitro into protofilaments (pfs) that are one subunit thick and ~50 subunits long. In vivo these pfs assemble further into the Z ring, which, along with accessory division proteins, constricts to divide the cell. We have reconstituted Z rings in liposomes in vitro, using pure FtsZ that was modified with a membrane targeting sequence to directly bind the membrane. This FtsZ-mts ...
متن کاملInvestigation of regulation of FtsZ assembly by SulA and development of a model for FtsZ polymerization.
In Escherichia coli FtsZ organizes into a cytoskeletal ring structure, the Z ring, which effects cell division. FtsZ is a GTPase, but the free energy of GTP hydrolysis does not appear to be used for generation of the constriction force, leaving open the question of the function of the GTPase activity of FtsZ. Here we study the mechanism by which SulA, an inhibitor of FtsZ induced during the SOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular microbiology
دوره 81 2 شماره
صفحات -
تاریخ انتشار 2011